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Abstract

Three modes of bubble flow in fluidized beds, identified and explained in a previous work (S. Sasic, F. Johnsson, B. Leckner, Interaction between
a fluidized bed and its air-supply system: some observations, Ind. Eng. Chem. Res. 43 (2004) 5730–5737), are studied here by linear methods
(wavelet analysis) in the time–frequency plane. The modes are: (1) single bubble regime characterized by the presence of one bubble at a time
in the bed; (2) a regime where single bubbles still dominate the flow field, but another type of structure (so-called exploding bubbles) becomes
significant at a different frequency; (3) a regime in which exploding bubbles, conceived as gaseous structures stretching from the air distributor to
the surface of the bed, clearly dominate the flow field, but pressure waves, originating from single bubbles in the bed, are still observed. The signals
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epresenting single bubbles, exploding bubbles and pressure waves are extracted from the original pressure signals by discrete wavelet analysis.
hese phenomena are identified as distinct local maxima in the distribution of energy over wavelet scales in a wavelet energy spectrum (obtained
y statistical analysis of wavelet coefficients). Also, a model, treating the data recorded as an organized event (e.g. bubbles) and an accompanying
hite noise process, is used for calculation of the time scales of phenomena present in the bed in a certain fluidization situation. It is shown how

hese phenomena are localized in time.
2006 Elsevier B.V. All rights reserved.
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. Introduction

The most commonly studied quantities in dynamic analy-
es of gas–solids fluidized beds are pressure fluctuations [1–5].
lthough measurements of pressure fluctuations are easy to per-

orm, the interpretation of such signals is not straightforward.
t is generally accepted that the fluctuations come from bubble
otion within the bed, but the exact origin of the fluctuations is

sually not clear. The information present in pressure time series
ecorded in gas–solid fluidized beds may be revealed either
y linear or nonlinear methods. Among the linear methods,
mplitude analysis (the study of how the amplitude of pressure
uctuations is affected by the operating conditions of the bed)
nd spectral analysis (the description of the signal in the fre-
uency domain) clearly dominate the present literature [4–6].
hese methods of time series analysis are based on the crucial
ssumption that the signals are considered stationary (or that they

∗ Corresponding author. Tel.: +46 31 772 1449; fax: +46 31 772 3592.
E-mail address: filip.johnsson@me.chalmers.se (F. Johnsson).

may be reduced to stationarity by some simple transformation,
see ref. [7]). In the literature related to pressure signals recorded
in fluidized beds, the validity of such an assumption has received
little attention. However, He et al. [8] demonstrated pronounced
nonstationary features in fluidized beds pressure signals using
a Wigner distribution (a quadratic time–frequency representa-
tion of a signal, see ref. [9]). Therefore, they presumed that no
reliable information regarding the dynamics of fluidized beds
can be obtained by classical Fourier analysis (spectral analysis).
The interest of dealing with possible time-varying properties of
signals has led to the increased use of time–frequency signal
representations, designed to yield a potentially more reveal-
ing picture of the temporal localization of a signal’s spectral
components. The most common representations of this kind
are the short-time Fourier transform and especially the wavelet
transform. Wavelet transform techniques are nowadays exten-
sively used in many fields of research: signal processing and
denoising (e.g. ref. [10]), fractal analysis (e.g. ref. [11]), in fluid
mechanics for the identification of coherent structures in turbu-
lent flows (e.g. ref. [12]), image coding [13], etc. In the area of
gas–solid flows, fluidization has been treated by wavelet analysis
385-8947/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
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Nomenclature

a dilation (scaling) parameter, Eq. (1)
b translation (location) parameter, Eq. (1)
a0, b0 discretization factors for scaling and location

parameters, respectively
CWf(t) continuous wavelet transform coefficients, Eq. (1)
DWf(t) discrete wavelet transform coefficients, Eq. (2)
D

(m)
SC scaled wavelet coefficients at scale m

em part of the total variance of the signal, attributed
to scale m, Eq. (4)

em(wn) part of total variance of the signal, at scale m, for
a white noise process, Eq. (5)

f (Hz) frequency
fs (Hz) sampling frequency of a signal
f(t) signal to be investigated
mj wavelet scale (Fig. 2), defined by a frequency band

[fs/2j+1, fs/2j]
M largest resolvable scale in a discrete wavelet

decomposition (determined by N)
N number of data points in the signal treated
t (s) time
Tf(t, f) time–frequency representation of a signal f(t)

Greek symbols
�fi uncertainty of the localization in the frequency

domain (Fig. 2)
�ti uncertainty of the localization in the time domain

(Fig. 2)
ψ basic wavelet function (mother wavelet), Eq. (1)

as a multiscale phenomenon with components on three distinct
frequency scales [14]: low frequency components related to
voids, medium frequency structures that represent particle clus-
ters and high frequency elements associated with single particle
motion. Wavelet analysis was also used by Chen et al. [15] for
detection of singularities in the pressure signal. They applied
the “wavelet transfer modulus maxima method” (WTMM, see
ref. [16]) where the Lipschitz exponents of every maximum
line (a line that connects points of the modulus maxima in the
time–frequency space) were utilized to characterize the hydro-
dynamics of the bed (the transition between turbulent and fast
fluidization was investigated). Roy et al. [17] proposed an algo-
rithm for denoising the pressure signal obtained in a fluidized
bed using a discrete wavelet transform. The major advantage of
the method proposed is that a threshold level for the noise (a
level below which all wavelet coefficients are either discarded
or reduced) is identified automatically, i.e. not chosen a priori.
Finally, Guo et al. [18] found that a bubble component of the
pressure signal resided at a certain level of the wavelet repre-
sentation. In summary, so far, wavelet analysis in the field of
fluidization has been mostly focused on decomposing the sig-
nals into representative frequency ranges. On the other hand,
the exceptional localization property of wavelets has not been
significantly exploited.

This is the purpose of the present work that deals with a
time–frequency representation (TFR) of three modes of bubble
flow, classified in an earlier work [19]. That study looked into
the interaction between a fluidized bed and its air-supply sys-
tem. In the three modes, two types of bubbles were identified at
different frequencies: the bubbles that produce pressure waves,
which propagate throughout the entire system (air plenum, air-
supply lines), and gaseous structures (exploding bubbles) in the
bed, whose effects are not readily observed in the remainder
of the system. Although nonstationarity of the signals treated
is not a priori assumed, the presence of different dominant fre-
quencies in the spectra makes it of interest to identify temporal
localization of the underlying phenomena. In the present work,
thus, the aim is to extract the more detailed information on the
dynamics of the fluidization behaviour than obtained by classi-
cal Fourier analysis. For this purpose, first, the transient power
spectral density analysis (van der Schaaf et al. [20]) is used as
an indication of the presence of different frequencies in the time
series at each instant of time. Then, discrete wavelet analysis is
applied to illustrate the distribution of energy in the signals in
the time–frequency plane and to calculate the fundamental time
scales (defined as duration of a certain structure in the bed) of
the major events that take place in the bed.

2. Theory
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.1. Transient spectral density analysis

Transient spectral density analysis is a simple technique,
sing standard Fourier methods, to observe whether the fre-
uency composition in a certain signal changes in time. The
rocedure is as follows: the signal treated is divided into a num-
er of segments and the power spectral density is calculated for
ach of them. The process results in a set of spectral densities
s a function of time covering the entire time sequence. The
utcome of the analysis is a surface plot with different colour
ntensities indicating the intensity of the power.

.2. Wavelet analysis

A time–frequency representation (TFR) of a time series is a
ap of a one-dimensional signal in time f(t), transformed mathe-
atically into a two-dimensional function of time and frequency

f (t, f) (Fig. 1). In the time–frequency plane the horizontal axis
pans the time domain of the signal (or its part), and the vertical
xis ranges from zero to the Nyquist frequency. The values of
he TFR surface covering the time–frequency plane indicate the
pectral components present at given times. There are linear and
uadratic TFRs. Although the quadratic structure of the TFR
ntuitively seems to be a reasonable assumption for the interpre-
ation as a time–frequency energy distribution (since energy is a
uadratic representation of the signal), the linear representations
re by far more common in applied research. Among the latter,
he short-time Fourier transform (or windowed Fourier trans-
orm) and the wavelet transform are mostly used. Contrary to the
lassical Fourier transform that provides a one-to-one relation
etween the time and frequency domains, the TFR combines
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Fig. 1. Schematic time–frequency representation of a signal f(t).f stands for frequency.

the two. Obviously, the information obtained by the Fourier
transform is sufficient in a case of stationary signals as the fre-
quency content of such signals does not change in time, and all
frequency components exist all the time. However, if there is
unsteadiness in the time series, it is of interest to extract pos-
sible local properties, both in time and frequency domain. The
short-time Fourier transform uses a window of a constant length
and the corresponding transform is computed for every part of
a signal within each window (i.e. the signal is considered sta-
tionary within the chosen window). Wavelet transform is, on the
other hand, regarded as a mathematical “microscope” [21] that
is able to examine different parts of the time series by adjusting
the focus of the “microscope”. Because of this property, wavelet
analysis will be applied in the present work.

The continuous wavelet transformation is defined [16] as the
inner product of the analyzed signal f(t) and the time-shifted and
scaled version of a wavelet function Ψ :

CWf (a, b) = 〈f,ψa,b〉 = 1

|a|1/2
∫
f (t)ψ∗

(
t − b

a

)
dt (1)

Ψ (the star implies complex conjugate value) in Eq. (1) is
called the mother wavelet and a and b are the dilation (scaling)
and translation (location) parameters, respectively. The factor
1/|a|1/2 is a normalization factor. The “mother wavelet” must
have two important properties [9]: a limited number of van-
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leads to a discrete wavelet transform, and by choosing the special
case when the discretizations are proportional to each other (a =
am0 ; b = nb0a

m
0 ), the following expression is obtained:

DWf (m, n) = 〈f,ψm,n〉 = 1

|a0|1/2
∫
f (t)ψ∗(a−m

0 t − nb0)dt

(2)

Daubechies [22] has shown that for a0 = 2 and b0 = 1, an
orthonormal family of functions (the condition imposed with
the aim of minimizing the number of wavelet coefficients) may
be constructed and that such a representation provides a mul-
tiresolution framework for analysis of phenomena present in a
time series. In practise, the discrete wavelet transform is a pair
of digital filters, which decompose a signal into a low frequency
component A1 (called the approximation) and a high frequency
part D1 (called the detail). In the next step, the approximation
A1 is used as an input, and by performing this operation recur-
sively up to a level k, a hierarchical representation of the signal
is obtained:

f (t) =
k∑
i=1

Di + Ak (3)
shing moments to allow time localization and a zero mean to
acilitate reconstruction. The transform allows localization both
n the time domain (via translations of the wavelet) and in the
requency domain (via dilatations of the wavelet). An important
eature of the signal representation plane is that the uncertain-
ies in the determination of time and frequency (the dimensions
f the rectangles in the time–frequency plane (Fig. 2)) are not
onstant over the plane, but that their product is. This means
hat the uncertainties�ti and�fi, which localize a certain event
n the time–frequency plane, cannot be made arbitrarily small
t the same time. Towards high frequencies the time resolution
mproves at the expense of the frequency determination, whereas
owards low frequencies the situation is the opposite. The con-
ept of scales (m), presented in Fig. 2, is explained below.

To reduce computational cost, while maintaining the same
egree of output information, the dilatation parameter (a) and the
ocation parameter (b) in Eq. (1) are discretized. The procedure
 Fig. 2. Localization features in the time–frequency plane.
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The detail Di contains frequency information in the band
[fs/2j+1, fs/2j], where fs is the sampling frequency and j is an
integer. Each of these frequency bands defines a scale (denoted
m (Fig. 2). At scale index 1, there are N/2 wavelet coefficients
(N is the total number of data points in the signal), at index 2
there are N/4 and so on to the single coefficient at the final scale
(determined as m = log 2(N) [16]). In summary, in the analysis
presented, the scale is inversely proportional to the frequency of
the classical Fourier analysis (every scale is spanned by a single
period wave). Finally, the original signal can be reconstructed
from wavelet coefficients by the inverse wavelet transform with-
out loosing information [16].

It is important for the analysis of a certain event that the phe-
nomenon studied falls exactly into one of the frequency bands.
If not, the energy may spill over into the neighbouring bands,
which makes the interpretation difficult. In such a case, a contin-
uation of the wavelet transform called “wavelets packets” [23]
should be used. They provide a more flexible and data-adaptive
decomposition of a signal and are preferable, especially when
high frequency phenomena are investigated (because of the poor
frequency resolution of classical wavelet analysis at those fre-
quencies). Another significant feature of the wavelets packets is
that, unlike in classical wavelet analysis, scale is not inversely
proportional to frequency, and every scale may be spanned by
multiple period waves.

The present work primarily concerns low frequency phenom-
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arbitrary threshold value is prescribed for the squared wavelet
coefficients when an organized event is to be distinguished from
the noise in the signal and coefficients smaller than the thresh-
old are not taken into account. Since the choice of the threshold
value introduces a certain degree of arbitrariness in the proce-
dure, a different method is chosen in this work. The idea is that,
at each scale, the data recorded are composed of an organized
event and an accompanying white noise process. The more the
data differ from the white noise, the more intense is the role of
the structure identified at the corresponding scale. It is important
to note that the maximum in em (Eq. (4)) does not necessarily
secure the predominance of that individual scale in the signal. It
is, namely, straightforward to show that the expectation of the
energy of the white noise process is not equally distributed over
the scales, but it can be written as [16]:

〈em(wn)〉 = 2M−m

2M − 1
(5)

where m = 1, 2, . . . M. Eq. (5) shows that the expected value of
the squared wavelet coefficients remains constant for each scale
(M is constant for the data set investigated). This results in an
exponential decay of em(wn) with the increase of m. Therefore,
the relative significance of an organized event at each scale is
obtained by plotting the difference between the total energy at
that scale and the corresponding energy originating from white
noise (e –e (wn)), versus the scale number m. The greater the
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na and there is no need for “wavelets packets”. The wavelets
oefficients are interpreted statistically to illustrate that the clas-
ical wavelet transform is indeed sufficient for this study. Here,
oth antisymmetric (“Daubechies” as a representative class, see
ef. [22]) and almost symmetric (“Sym” class [22]) wavelets are
ested, since this particular property usually affects the outcome
f a wavelet spectrum analysis [16].

The technique to identify different structures present in the
ime series from the orthogonal wavelet multiresolution analysis
s to investigate the wavelet variance [24]. The results of such
statistical analysis may be compared with the ones obtained

y classical Fourier analysis, since both bases are orthogonal.
lso, conservation of energy, i.e. Parseval’s identity, holds for
avelet coefficients (as it does in the Fourier analysis). The rel-

tive contribution of a structure (e.g. a bubble), captured by the
etail Di at scale m of a signal f(t), to the total variance of the
ignal is defined as:

m =
∑2M−m
i=1

(
D

(m)
sc (i)

)2

∑M
j=1

∑2M−j
l=1

(
D

(j)
sc (l)

)2 (4)

ith m = 1, 2, . . .M andD(m)
sc as the scaled wavelet coefficients,

efined by D(m)
sc = 2m/2D(m). The general rule is that the more

istinct a structure is, the more significant becomes the value
f the squared wavelet coefficient at the particular location and
cale. If an event (e.g. a bubble) may be unambiguously con-
ected to a certain scale m, then it is straightforward to calculate
ts principal time scale (defined as the duration of the event in the
ed). However, to do so, the resolution of the wavelet spectrum
as to be high enough to clearly separate the scales. Usually an
m m

ifference, the more profound is the effect identified. At negative
alues the noise dominates the signal at the scale concerned.

. Experiments

The data sets investigated were recorded by Sasic et al. [19]
nd experimental details are given in that work. Pressure fluctu-
tions were measured in a unit, which is approximately scaled
o model the dynamic behaviour of a 12 MWth circulating
uidized bed boiler [25]. However, during the investigation con-
erned, the unit was operated under noncirculating conditions,
ummarized in Table 1. Simultaneous measurements of pressure
uctuations in the bed and in the air plenum were performed.
he bubble dynamics were studied by an optical probe, and the
ressure fluctuations were measured (Honeywell pressure trans-
ucers, type 143PC03D) in the bed at the wall, 18 mm above
he air distributor. The sampling frequency was 200 Hz, and the
otal amount of data acquired for each run was 48,000 points.
he response time of the pressure sensor was low enough to

able 1
xperimental and operating conditions

emperature Ambient

ross section (m × m) 0.19 × 0.17
eight of the unit (m) 1.5
ed material Bronze
article diameter (mm) 0.10
luidization velocity (m/s) 0.18, 0.37, 0.73
lux of solids (kg(m2 s)) 0 (bubbling conditions)
ir distributor pressure drop (Pa) 400, 520, 1000
ed pressure drop (Pa) 2500
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Fig. 3. Time sequences of pressure fluctuations in the bed in the three cases
investigated: (a) U = 0.18 m/s; (b) U = 0.37 m/s; (c) U = 0.73 m/s.

capture the dynamics of the pressure fluctuations in the bed. The
dimensions of the probe in combination with the transducer were
proven not to distort the measurements, in agreement with van
Ommen et al. [26].

4. Results and discussion

Pressure signals recorded in the bed in the three cases inves-
tigated are presented in Fig. 3 for a short interval of time. The
signals differ significantly in amplitude, time scale and in over-
all shape. Fig. 4 illustrates the corresponding frequency spectra,
each obtained as an average from a number of sub-spectra (the
number being chosen to obtain a good trade-off between fre-
quency resolution and statistical significance). The main features
of the fluidization regimes that produced the spectra will be
briefly outlined here; details are given in ref. [19]. At low flu-
idization velocity (0.18 m/s) and a pressure drop across the air
distributor that is significantly lower than the pressure drop over
the bed, a regime termed the single bubble regime is identi-
fied [27]. A piston-like movement of the bed as a whole and
a strong periodicity in the formation and eruption of bubbles
are observed. The cross section of the unit is large enough for
slugging not to occur. After the eruption of a bubble, the bed col-
lapses to a state free of bubbles (which leads to a discontinuity

of the gas flow). The dominant frequency of the pressure signal
measured in the bed fully coincides with the pressure variations
identified in the air plenum and with the voidage recorded by
an optical probe in the bed [19]. The explanation is [3,19] that
after the collapse of the bed a pressure wave is created, which
afterwards propagates throughout the entire system, given that
the resistance of the air distributor is low. The fundamental fre-
quency of such a bed can be described by a simple harmonic
oscillator [27,28].

The character of fluidization becomes more complex when
the gas velocity is increased to 0.37 m/s. A large number of small
bubbles, growing rapidly in size, are observed above the air
distributor. Fig. 4 shows that the pressure fluctuations in the bed
have a peak at approximately 1.5 Hz (not seen at 0.18 m/s). The
hypothesis that this peak represents so-called exploding bubbles
[29] is confirmed by spectral analysis of the optical signal [19],
showing that large voids of gas are present in the bed at the
same frequency. Those voids may be conceived as shortcuts
of gas from the air distributor through the bed into the splash
zone, and no significant pressure wave is thereby created (the
pressure peak at 1.5 Hz is not found in the air plenum [19]). On
the other hand, the high frequency content of the signal in the
bed is similar to that of the single bubble regime at 0.18 m/s, but
with a somewhat wider frequency distribution. In summary, a
complex flow field is established, consisting of large exploding
bubbles and structures of small and intermediate size (bubbles
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Fig. 4. Frequency spectra in the three cases investigated.
elated to pressure waves).
Finally, when the gas velocity is increased to 0.73 m/s, large

tructures below 2 Hz clearly dominate the signal recorded in
he bed (Fig. 4). The high frequency content is still present and
ignificant. The increased energy in the signal of the optical
robe [19] indicates that the exploding bubbles grow in size as
he gas velocity increases. Again, as in the 0.37 m/s case, the
trong peak at 1.5 Hz is not found in the air plenum. Conse-
uently, the bubbling behaviour of the bed may be separated
nto dominant gaseous structures (exploding bubbles) and bub-
les related to pressure waves that propagate throughout the
ystem (the higher frequency content (Fig. 4)). The waves are
revented from propagation only if the pressure drop over the
istributor is large enough to decouple the bed from the rest of
he system (this could take place at a pressure drop in the order
f magnitude of the pressure drop over the bed or greater).

.1. Transient spectral density analysis

Fig. 5 shows the outcome of the transient power spectral
ensity analysis in the three cases investigated. The gray scale
epresents power and the vertical axis stands for frequency, while
he horizontal axis shows the blocks into which the entire time
eries was divided. The spectral density was calculated for each
lock. In Fig. 5, eight blocks (30 s each) are chosen to obtain
fair trade-off between frequency resolution and statistical sig-
ificance. In the single bubble regime only one single oscillation
ode is present at approximately 4 Hz (Fig. 5a). The frequency

ontent in that regime does not change; the dominant component
xists all the time. On the other hand, in the complex regime,
here pressure waves and exploding bubbles are competing
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Fig. 5. Transient power spectral density in the three cases investigated: (a) U = 0.18 m/s; (b) U = 0.37 m/s; (c) U = 0.73 m/s.

effects (Fig. 5b), the power (the gray areas in the figure) does
not remain constant throughout the signal. At a certain time one
effect may dominate the flow field, whereas afterwards another
takes over. Finally, Fig. 5c shows that at the highest velocity,
the frequency component that represents large, exploding bub-
bles is present almost all the time in the signal, while the modes
corresponding to pressure waves alternate between multiple fre-
quency bands.

The simple analysis cannot provide any precise quantitative
information on time localization of particular frequency com-
ponents. However, it does indicate temporal changes in the
oscillation mode of a certain fluidization regime, and thus, it
points at the usefulness of more advanced methods.

4.2. Wavelet analysis

Fig. 6 illustrates the differences between the total energies
(e) and the energies originating from white noise (e(wn)) at
the corresponding scales mi (i = 1, 2 . . . M), using antisym-
metric wavelets (“dB7” was used from the Daubechies class
of wavelets. The wavelet of somewhat higher order was cho-
sen, because regularity of a wavelet increases with the order.
Decomposing the original signal using wavelets with increased
regularity yields the smooth reconstructed signal, see ref. [22]).
Close-to-symmetric wavelets were tested as well (“Sym4” from
the symlets class), but little quantitative or qualitative difference
w
t
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energy compared to the previous case. Another effect is seen at
scale m = 7, corresponding to the previously identified explod-
ing bubbles (Fig. 4). Also, the absence of any important effect at
scale m = 6 is significant, which further proves the existence of a
complex regime with two clearly defined and separated effects
(pressure waves and exploding bubbles). Finally, Fig. 6c exem-
plifies the dominance of the exploding bubbles (which grow in
size, since the energy at scale m = 7 is further increased com-
pared to Fig. 6b). The diagram also shows that the impact of
the pressure waves is now split over scales 5 and 6. The latter
effect usually introduces problems in the interpretation of the
results, but this is not the case in the present study, since it is
credible to state that both scales represent pressure waves. The
negative values at the vertical axes in Fig. 6 point towards the
prevalence of noise (i.e. the lack of large, low frequency struc-
tures) in the signals investigated at the corresponding scales. Of
course, the noisy component of the pressure signal recorded in
fluidized beds is only approximately represented by white noise.
Actually, there is a significant slope in the power spectrum, often
modelled by a power-law [4]. Since the aim of the present work
is the investigation of the low frequency phenomena, the exact
nature of the noise is not of importance.

The results allow calculation of the duration of the struc-
tures identified in the bed. The duration of an event is defined
as 2m+1/fs (s), i.e. it is twice as large as the actual wavelet scale
that the structure belongs to. Using this reasoning, the duration
o
t
r
m
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as found. The dominant scales are readily observed in all cases
reated, and furthermore, with sufficient scale resolution. Hence,
ig. 6a points at the existence of a dominant structure at scale
= 5. Having in mind the frequency range (3.1–6.2 Hz) that

etermines that scale with the sampling frequency used in the
resent work, and also conclusions from the previous work [19],
hown in Fig. 4, the major structure is clearly identified as a sin-
le bubble present in the bed. Fig. 6b is equally revealing: at scale
= 5 the dominant effect is still present, but with somewhat less
f a single bubble in the bed is in the order of 0.3 s, whereas
he exploding bubble lasts approximately 1.2 s. The time scale
elated to the pressure waves does not have the same physical
eaning as in case of the other two structures. The waves, orig-

nating from phenomena in the bed are not limited to the bed
nly; they may be felt in the entire system (bed + air plenum
air-supply lines) and their propagation features are system

ependant (the important parameters are: pressure drop at the
ir distributor, size of the air plenum, etc.).
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Fig. 6. Scalewise energy distribution in the pressure signal (antisymmetric
wavelets (“dB7”): (a) U = 0.18 m/s; (b) U = 0.37 m/s; (c) U = 0.73 m/s.

It is indicated above that wavelet decomposition is expected
to separate the scales, while keeping the temporal reference. The
qualitative outcome of such an analysis is a scalogram, i.e. a dis-
tribution of signal energy in the time–frequency (scale) plane.
The scalogram is a visual two-dimensional representation of the
signal, which illustrates the contribution of each pattern in the
time-scale plane to the total energy of the signal. Such a repre-
sentation is possible, since the wavelet coefficients are, in fact
(see Eq. (1)), the correlation between the wavelet and a local-
ized section of the signal treated. Consequently, if the signal has
a significant frequency component corresponding to the given
scale, the wavelet at this scale is close to the signal at that partic-

Fig. 7. Scalograms of the pressure fluctuation signals: (a) U = 0.18 m/s; (b)
U = 0.37 m/s; (c) U = 0.73 m/s. Antisymmetric wavelets (“dB7”) were used.

ular location, and the wavelet transform coefficient, obtained in
that point, has a large value. Fig. 7a–c gives scalograms for the
cases treated with the intensity of the gray-scale indicating the
energy level of an individual cell (the cell in the time–frequency
plane is defined by the uncertainties�ti and�fi (Fig. 2)). Thus,
the higher the energy content of the cell, the darker is the cell
in Fig. 7. For the sake of visual clarity only 10 s are shown on
the time axis, and on the vertical axis, representing frequency
(1/scale), the maximum is set to fN/4 (fN is the Nyquist fre-
quency). As the gas velocity increases from 0.18 to 0.73 m/s, the
cells corresponding to higher scales (lower frequencies) become
more energetic. Fig. 7a, in accordance the statistical analysis of
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the wavelet coefficients (Fig. 6a), clearly identifies scale m = 5
as the dominant one, and therefore, expresses the effect of the
single bubbles present in the bed (which, in turn, produce pres-
sure waves). In the same manner, Fig. 7b illustrates a complex
flow field, consisting of pressure waves and exploding bubbles.
Again, there is no significant structure at scale m = 6, i.e. the
effect is identified with clear resolution. Finally, Fig. 7c shows
the dominance of the exploding bubbles, as well as the split of
the energy of the pressure waves into two neighbouring scales (5

F
t
(

and 6, with some energy present even at scale 4). However, the
most important feature of Fig. 7 is that it provides a temporal
localization of the phenomena identified, with by far superior
resolution than in the transient power spectral density analysis
(Fig. 5). It is seen that the single bubbles are evenly distributed
in time (Fig. 7a), whereas Fig. 7b shows that the occurrence of
the bubbles creating pressure waves is more irregular. In this
fluidization regime (0.37 m/s), the distribution of the exploding
bubbles in time is similar to the one of the pressure waves. In
the highest velocity case (Fig. 7c), the irregularity of the occur-
rence of the exploding bubbles is demonstrated; a conclusion
that somewhat differs from the one obtained from Fig. 5. The
distribution of the bubbles responsible for pressure waves is sim-
ilar to the one observed in the medium velocity case (Fig. 7b).
Finally, it is important to have in mind that the temporal local-
ization of the single bubbles and the pressure waves is obtained
with higher resolution than for the exploding bubbles (due to the
uncertainty principle (Fig. 2).

Fig. 8a–c presents the original pressure signal in the three
cases, together with the details, D5, D6 and D7, which have
been shown to be of interest for the analysis in this work. It is
obvious again that almost the entire energy in the low veloc-
ity case (Fig. 8a) resides in scale m = 5 (the same range in the
vertical axis is kept for all signals to allow visual comparison).
Consequently, this is another way to illustrate that the single
bubbles are the main source of pressure fluctuations (and pres-
s
n
q
h
a
e
t
p
7

ig. 8. Selected discrete wavelet transform coefficients (D5, D6 and D7)
ogether with the original pressure signal: (a) U = 0.18 m/s; (b) U = 0.37 m/s;
c) U = 0.73 m/s.
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ure waves as explained before) in this case. Furthermore, the
umber of peaks in scale m = 5 clearly fits into the major fre-
uency of the classical Fourier analysis (Fig. 4). On the other
and, for the medium velocity case (Fig. 8b), significant energies
re visible in scales 5 and 7, and so is the absence of important
vents in scale 6. The analysis of the number of peaks related to
he respective scales unambiguously corresponds to the results
resented in Fig. 4. The amplitude of the signals at scales 5 and
also shows that none of these effects is clearly dominant in the
ow field. In the highest velocity case (Fig. 8c), the exploding
ubbles are dominant in the bed (scale 7), with the number of
eaks corresponding to the result from Fig. 4. Also, the widen-
ng of the frequency range of pressure waves is illustrated by the
ppearance of a signal with significant energy at scale 6.

. Concluding remarks

Pressure signals recorded in a gas–solid fluidized bed have
een analysed by wavelet and by transient spectral density anal-
sis to assess the temporal properties of bed dynamics that are
ormally not captured by conventional frequency analysis, such
s Fourier transform.

Transient spectral density analysis gives a simple, pictorial
epresentation of the frequency composition of a signal in time.
t was shown that, although no precise quantitative information
as obtained on the time localization of the spectral compo-
ents, temporal changes in the oscillation mode of the bed were
ualitatively described.

Discrete wavelet decomposition expresses different fre-
uency components (scales) in the signal and links them to
he dynamic behaviour of a fluidized bed, in the present case,
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to pressure fluctuations. By statistical analysis of calculated
wavelets coefficients, bed phenomena, despite being complex,
can be separated with high resolution in the time–frequency
(scale) plane.

A model expresses the pressure signal recorded in a fluidized
bed as comprised by an organized event (e.g. a bubble) and
an accompanying white noise. This model uses the maximum
difference between the energy of the signal at a given temporal
location and scale and that of pure white noise to identify the
time scale of dominant phenomena and their duration in the bed.
It was shown that the type of wavelet base used for the analysis
does not affect the results.

In addition, it is demonstrated that wavelet analysis repre-
sents not only an instrument for decomposing the signals into
representative frequency bands, but it is also a powerful tool for
the temporal localization of the phenomena of interest.

Wavelet analysis is valuable for the understanding of intrin-
sic features of pressure signals recorded in fluidized beds, but
the use of wavelets is motivated only if they provide informa-
tion that cannot be obtained by more common methods, such as
classical Fourier analysis. An appropriate example is the study
of localization in time of different phenomena identified in a
signal.
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